The lakes along the Great African Rift Valley are among the largest fresh water lakes in the world. They lie in depressions created by slow stretching and thinning of the east African continent over millions of years. Many of the essential geological structures that enable the continent to tear and produce earthquakes are hidden within the Earth below these lakes. Lake Malawi (Nyasa) is the southernmost of these Great Rift Valley lakes and represents one of the youngest segments of the East African Rift System today. The lake is a whopping 550 km long and up to 70 km wide and surrounded by three countries : Mozambique to the southeast, Tanzania to the northeast, and Malawi to the west.
To image geologic structures and record earthquakes beneath northern Lake Malawi, our science team is undertaking a major “marine” seismic study as a part of the NSF-funded SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project. This part of the project involves generating sound waves using a towed array of “air guns” and recording the sound waves on a 1500-m-long cable filled with pressure sensors and an array of seismic stations deployed both onshore and on the lake bottom. The scientific and technical staff for this part of the project come from Lamont-Doherty Earth Observatory of Columbia University, Syracuse University, the Malawi Geological Survey Department, the Geological Survey of Tanzania, Aarhus University and Scripps Institution of Oceanography.
Marine seismic studies like ours are routinely done in the oceans using scientific equipment and research vessels outfitted specially for these purposes. Collecting comparable data in a great lake in Africa requires creative repurposing of available vessels and adaption of scientific equipment. To deploy and recover seismometers on the lake floor, Jim Gaherty and team used a small research vessel (R/V Ndunduma) operated by Malawi Fisheries Department. Deck space is limited, requiring efficient packing and multiple trips to deploy 34 seismometers in the lake with a boom normally used for dragging fishing nets. For the seismic imaging component, we transformed a large container ship (M/V Katundu) into a seismic research vessel. Containers were placed on the deck that house our scientific “lab,” a workshop for repairing science equipment, a storage space for extra gear and miscellaneous items, and an accommodation container with 8 bunks to sleep some of the science party. We have also added large spool for the seismic streamer, generators and compressors to drive the seismic sound source, and a large metal arm (termed “the ironing board”) for towing the seismic source. Using non-standard ships, equipment and data collection procedures requires a team with technical expertise and ingenuity, and happily we have that in spades.
We are now slowing steaming across beautiful Lake Malawi in the M/V Katundu acquiring fantastic data as we go …
Donna Shillington and Natalie Accardo, M/V Katundu, 22 March 2015