State of the Planet

News from the Columbia Climate School

,

Why are Past Surface Temperatures and CO2 Concentrations Important?

This blog is an outgrowth of my own research examining the past temperature of Earth’s surface and the relationship of temperature to the Earth’s carbon system. I became interested in the scientific aspects of this work as a geology undergraduate, staring at regular layers of rocks in the countryside of central Italy, back and forth, dark and light. These layers were related to past oscillations of the climate, warmer and cooler, related to long-term changes in the incoming solar radiation entering our planet from the sun. Such changes are small, but positive and negative feedbacks in the Earth system interact to translate the small changes into the radically layered rocks we see in outcrops. This was the start of a journey of discovery that continues to this day and is the foundation of my research at the Lamont-Doherty Earth Observatory.

Oscillating limestone rock layers, Italian Alps
Oscillating limestone rock layers, Italian Alps. Photo: Kelsey Dyez

How does the carbon dioxide (CO2) content of the atmosphere influence climate? This question was first seriously considered in the mid- to late-1800s, amid an accelerating, newfound interest in the natural sciences on the European continent. Specifically, the Victorians were fascinated by looking backward in time, at periodic extreme cold spells, also known as ice ages, when glaciers as tall as skyscrapers covered vast areas of land that today are free from ice.

The discourse about past climates began with this approach, through a discussion about how the driving forces in the Earth system might have caused our globe to periodically enter and exit the ice ages. Many factors, including emissions from volcanoes, the rearrangement of continents, the evolution of plants and vegetation, solar sun-spot cycles, and even asteroid impacts can and do impact the average surface temperature of the planet.

Yet time and again scientists returned to the role that greenhouse gases, and specifically carbon dioxide (CO2), play in the climate system. CO2 molecules in the atmosphere absorb heat (infrared radiation) coming from the Earth’s surface and then re-radiate some of that heat back to the surface to generate a warming effect. How is this related to the glacial ice age cycles of the past?

Simplified greenhouse effect: CO2 molecules in the atmosphere absorb heat coming from Earth's surface and re-radiate some of that heat back to the surface to generate a warming effect
Simplified greenhouse effect: CO2 molecules in the atmosphere absorb heat coming from Earth’s surface and re-radiate some of that heat back to the surface to generate a warming effect.

One way to think about this problem is to imagine the Earth system as a huge, naturally occurring experiment (though the sample size by most experimental standards is low). Sometimes the Earth has been warmer than today, even ice-free at the poles. When the ice melts, sea level rises, continents spring back after being depressed by the weight of the ice, and plants that need warmer weather expand their habitat pole-ward. The Earth has also been cooler than today, most recently at the last glacial maximum (~20 thousand years ago) when more ice was locked up in the polar ice sheets rather than in the ocean, making for lower sea level, which exposed more of what is today the ocean floor.

Today the framework of thought has turned around, so that instead of looking back through time to understand the climate of the past, we also try to learn lessons from the past to further our understanding of the climate of the future. By burning fossil fuels for heating, electricity, transportation and other purposes, humans add CO2 to the atmosphere. Yet, by comparing ways in which the Earth’s temperature, CO2 concentration, sea level and ice sheets have changed in the past, we are able to learn valuable lessons about the climate system of today and tomorrow. You can share in this adventure here.

NYC emitted 54 million tons of CO2 in 2010
New York City emitted over 54 million tons of CO2 in the year 2010. To imagine this number, every sphere here represents 1 ton of CO2 at the average surface temperature and pressure. Image: Carbon Visuals/Flickr

One last word of caution: At the turn of the last century, people also began to wonder if land-use and manufacturing—human-induced variability—could play a role in climate. Because this issue has become highly politicized, I won’t get into all the back-and-forth arguments here. That forum has other locations online. However, for a modern history of this fascinating topic, check out the American Institute of Physics (which can be found at http://www.aip.org/history/climate/co2.htm); and for more on the science, check out what the EPA has to say (http://www.epa.gov/climatechange/ghgemissions/gases/co2.html). Both purport an objective analysis of both the history and basic science involved.

Science for the Planet: In these short video explainers, discover how scientists and scholars across the Columbia Climate School are working to understand the effects of climate change and help solve the crisis.
Subscribe
Notify of
guest

1 Comment
Oldest
Newest
Inline Feedbacks
View all comments
Judson Witham
Judson Witham
7 months ago

So CO 2 should reflect the Sun’s heat just as much right ?