State of the Planet

News from the Columbia Climate School

,

State of the Arctic: Longer Melting Seasons, Thinning Sea Ice

The Arctic is warming twice as fast as the rest of the planet, and scientists are seeing the effects across ice and ecosystems. The average annual air temperature over Arctic land is now 3.5°C (6.5°F) warmer than it was 1900, Greenland is experiencing longer melting seasons, and this year’s spring snow cover extent set a record low in the North American Arctic, according to the National Oceanic and Atmospheric Administration’s newly released 2016 Arctic Report Card.

Understanding these changes is becoming increasingly important for economic planning and national security in many countries, as well as for the daily lives of people whose communities are directly affected.

Marco Tedesco, a glaciologist at Columbia University’s Lamont-Doherty Earth Observatory and the lead author of the Arctic Report Card chapter on Greenland, described some of the changes he has been seeing in Greenland during a news conference today for the report’s release during the American Geophysical Union Fall Meeting in San Francisco.

The Greenland Ice sheet, which holds enough water to raise global sea level by an estimated 6 meters (20 feet), has been losing mass since at least 2002, when satellite measurements of the ice sheet began. Its melting season has also been starting earlier and lasting longer. In 2016, the start of Greenland’s annual summer surface melt was the second earliest in the 37 years that satellites have been observing the ice sheet, Tedesco said.

“The melting season is getting longer, invading spring and fall, and it’s preconditioning the next melting season,” Tedesco said.

In Northeast Greenland, the melting season lasted 30 to 40 days longer this year than the 1979-2016 average, and it was 15 to 20 days longer along the West Coast, he said. That longer melting period can precondition future melting, creating what Tedesco has referred to as “melting cannibalism”. Melting changes the properties of snow and ice when it refreezes, creating larger grains that “darken” the ice surface, allowing it to absorb more radiation when exposed and exacerbate future melting. (Tedesco discusses some of the feedback mechanisms driving melting in Greenland in the video above.)

Warming air is also creating problems in other parts of the Arctic by thawing normally frozen permafrost. That can create structural instabilities for roads and buildings, and it can release carbon dioxide and methane, powerful greenhouse gases. “We estimate the tundra is releasing net carbon to the atmosphere,” Tedesco said.

Permafrost areas hold large stores of organic carbon, equivalent to about twice the amount currently in the atmosphere, according to the Report Card. In a study published two weeks ago, Lamont post-doctoral scientist Francesco Muschitiello and colleagues showed what warming has done to permafrost carbon stores in the past. They presented the first direct physical evidence of a massive release of organic carbon from permafrost during a warming spike at the end of the last glacial period, documenting how Siberian soil that was once locked in permafrost was carried into the Arctic Ocean during the end of the last glacial period at a rate about seven times higher than recent times.

Greenland's ice can "darken" in ways we can see and ways we can't. Photo: Marco Tedesco
Greenland’s ice can “darken” in ways we can see and ways we can’t. Photo: Marco Tedesco

The Arctic Report also describes how Arctic sea ice has also been getting younger and thinner, leaving patches of dark open water that can absorb more solar radiation and warm the water. This summer, Arctic sea ice fell to its second-lowest minimum extent since satellite record keeping began in 1979, and in November it registered a record low for the month, according to the Report Card.

In the Native Village of Kotzebue, just north of the Arctic Circle in Alaska, the predominantly Iñupiaq community relies on the seasonal sea ice and the marine mammals that live on the ice pack, and its members have seen changes in the ice in recent years, including the sea ice forming later and breaking up earlier in the year. The community is now partnering with Lamont oceanographer Christopher Zappa on a research project that will put drones to work studying changes in the changing sea ice and ocean ecosystem. Zappa’s team, with support from The Gordon and Betty Moore Foundation, will be using airborne remote sensing technology to study the spring melt process, the ice’s stability, ocean circulation in the area, and marine biological processes.

Lamont scientists are currently studying several areas of the Arctic to increase our understanding of the changes that are underway now and those ahead.

In Alaska’s interior, Lamont ecologist Natalie Boelman and plant physiologist Kevin Griffin have been working near the tree line, where boreal forest ends and tundra begins. They are part of a team that is combining satellite observations with fieldwork to better understand the affects warming will have on Arctic region’s vegetation and trees, including risks from insect infestations and wildfire.

Joerg Schaefer, Nicolas Young, and William D’Andrea and have been analyzing geochemical changes in Greenland’s bedrock and evidence in sediment from glacier-fed lakes to understand how the region’s ice cover responded to warming in the past. Schaefer recently found evidence in bedrock drilled from two miles below the summit of the Greenland Ice Sheet that suggests the ice sheet might not be as stable as believed.

Tedesco and Lamont geophysicists Indrani Das and Robin Bell also led a workshop earlier this year with scientists from around the world to discuss ways to improve understanding of the fundamental processes controlling the surface mass balance of the Greenland Ice Sheet. Tedesco will be presenting details from the workshop at the American Geophysical Union Fall Meeting later this week.

“Rarely have we seen the Arctic show a clearer, stronger or more pronounced signal of persistent warming and its cascading effects on the environment than this year,” said Jeremy Mathis, director of NOAA’s Arctic Research Program. “While the science is becoming clearer, we need to improve and extend sustained observations of the Arctic that can inform sound decisions on environmental health and food security, as well as emerging opportunities for commerce.”

Learn more about the work underway at Lamont-Doherty Earth Observatory, Columbia University’s home for Earth science research.

Colorful banner image over Earth with text "Open House Discover Science, October 19, 2024, 10am to 4pm

Join us on Saturday, October 19, from 10 a.m. to 4 p.m. for the Lamont-Doherty Earth Observatory Open House! Celebrate 75 years of science with us at our beautiful Palisades, NY campus. The event is free and open to everyone, with a suggested $5 donation. Learn More and RSVP

Subscribe
Notify of
guest

1 Comment
Oldest
Newest
Inline Feedbacks
View all comments
Arno Arrak
Arno Arrak
7 years ago

So, the Arctic is warming is twice as fast as the rest of the planet experiences. What do you make of this, if anything? Is it your belief that this global warming is anthropogenic, just another variant you were not told about? If, by some chance, you had suspected something unusual you just may have gone to the literature and discovered that the Arctic warming problem has been solved. But I guess that is too much to expect from so-called “climate scientists” who believe in man-made warming. Since you did not do that I suggest you read my article that appeared in Energy & Environment, Volume 21, Issue 8, in 2011. You will learn what you missed. You will also realize that all those meticulous temperature measurements etc. should have been done by technicians not by people who want to be known as scientists. They measure, you interpret. But I digress. Nothing much happened in the Arctic for the last 2000 years except for slow, linear cooling until the start of the twentieth century. Then suddenly a heat wave appeared out of nowhere and the temperature curve became a perfect hockey stick. We owe this observation to Kaufman et al. who analyzed the sediments in circumpolar small lakes that had retained seasonal layers that could be dated. They were helped in this task by a group of 2K Project volunteers who did the actual digging. The scale of their graph where it made the upward turn was not sharp enough to show what happened but I could use the Arctic Report Card for 2010 to expand the scale into the twentieth century. It turned out that the warming did start at the turn of the century but was interrupted by a thirty-year cold spell in mid-century. Warming then returned in 1970 and has been active ever since. Your cohort unfortunately is ignorant of how it all started because you did not start measurements until 1979. Obviously, something big happened at the turn of the century to get all you guys out studying it a hundred years later. After considering the alternatives, I concluded that the only possible way to pull it off is to completely rearrange the oceanic circulation pattern of the North Atlantic Ocean. Only this way could shift the North Atlantic current that carries warm water of the Gulf Stream turned more directly towards the Arctic Ocean. more directly into the Arctic Ocean and thereby start warming the Arctic. That warm water really is directly flowing into the Arctic Ocean was proven by Spielhagen et al. They took an Arctic cruise and directly measured the Atlantic water temperature that was entering the Arctic. They determined that that its temperature was higher than known at any time before. It is the warm gulfstream water responsible for all the manifestations of Arctic warming you have observed. It is not anthropogenic and has nnothing whatsoever to do with carbon dioxide or the greenhouse effect.