State of the Planet

News from the Columbia Climate School

, , ,

Collecting Core Data About Arctic Ecosystems

Andy Juhl collects temperature data from a core, while Craig Aumack drills another.
Andy Juhl collects temperature data from a core, while Craig Aumack drills another.

Our team spent most of Friday on the Arctic sea ice, drilling and sampling ice cores at our main field site. For each core collected, Lamont-Doherty Earth Observatory scientists Andy Juhl and Craig Aumack take a number of different physical, chemical and biological measurements that characterize the ice and the organisms living inside it. Some of these measurements are recorded right away in the field, others will be taken later using pieces of the cores that we bring back to the lab.

Two of the physical measurements Andy and Craig record are the temperature and salinity of the ice. “Temperature is a critical parameter that controls the rate of almost all biological processes in the ice — almost everything happens slower when it’s colder, and parts of the ice can be colder than others. And if you know the temperature and the bulk salinity of the ice you can calculate how much brine volume there is within a given layer in the ice,” Andy explained.

Brine volume is an important measurement because algae live in brine channels in the ice. As ice gets colder, there’s less brine volume within it, meaning there’s less room for algae to grow. Andy and Craig also measure the concentrations of plant nutrients in the ice cores, including nitrate, ammonia, phosphate and silicate – some of the same elements that plants growing on land need. And, as with terrestrial plants, nutrient availability in sea ice is a factor that controls the growth of algae inside the ice.

Ice cores: the objects of our affection. The brown areas are the bottom of the cores and indicate the presence of algae in the ice.
Ice cores: the objects of our affection. The brown areas are the bottom of the cores and indicate the presence of algae in the ice.

Other measurements, such as particulate organic carbon (POC) and dissolved organic carbon (DOC), Andy and Craig take in the lab will reveal the amount of carbon, or organic material in the ice. In addition to algae, carbon found in the ice comes in the form of non-living materials, such as bits of organic detritus from the tundra that become trapped in the ice. Finally, samples are collected for microscope work so that project scientists can identify the different types of organisms found throughout the ice.

All of this information varies in any single ice core from the top to the bottom, and based on where it is drilled. By taking consistent measurements from each ice core in different locations, project scientists can develop an in-depth understanding of the dynamics of the Arctic algal ice ecosystem – and how it may be changing.

Our group spent Saturday and Sunday in the lab processing samples from last week and preparing equipment, including mounting a camera system on our small remotely operated vehicle (ROV). We’re heading back onto the ice early Monday morning with the ROV and are looking forward to working in temperatures that may reach 35F.

For more information on our project, visit http://lifeintheice.wordpress.com or follow Lamont-Doherty Earth Observatory and the hashtag #LDEOarctic on Twitter.

Subscribe
Notify of


0 Comments
Oldest
Newest
Inline Feedbacks
View all comments